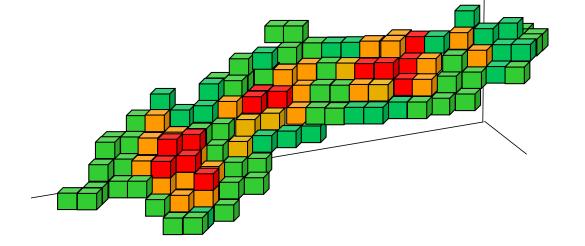
Procemin-GEOMET-2017

13th International Mineral Processing Conference 4th International Seminar on Geometallurgy

Geometallurgical Block Model vs Geometallurgical Units

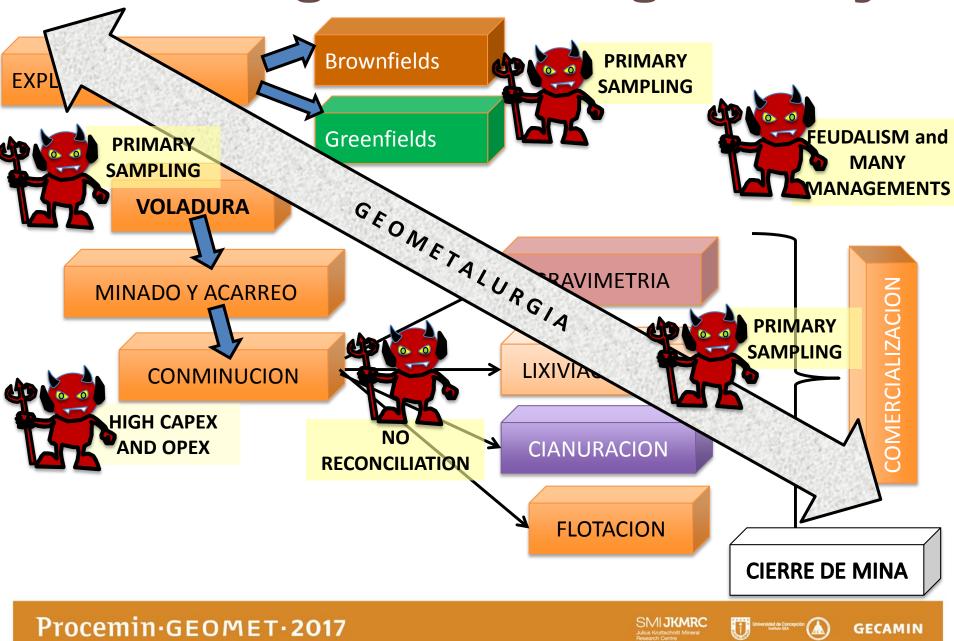
Gerente General **SAMPLING OK SAC** Catedrático UNI y PUCP-Lima Perú

gecamin.com/procemin.geomet



Secular main problems of Mining Industry

- High CAPEX and OPEX
- Low productivity
- Low recovery and extraction in plants, piles and pads
- Bad selection Ore vs Waste
- No Reconciliation (optimizing also Primary Sampling)

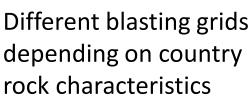

GECAMIN

GEOMETALLURGICAL

BLOCK MODEL (GMBM)

SOLUTION:

Main stages of mining activity

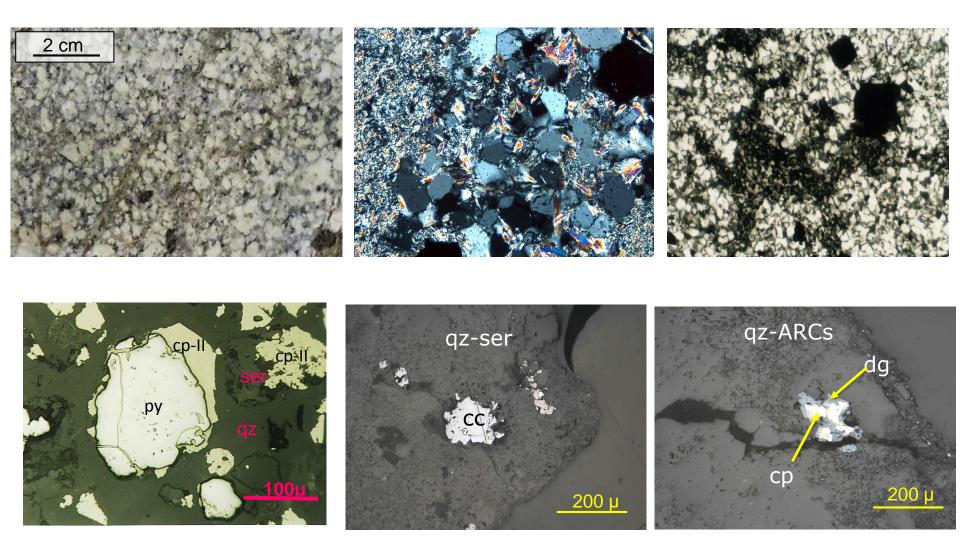


Intelligent Blasting "Comminution begins with Blasting"

Shahuindo (high sulfidation Au deposit in Cajamarca-Perú) is a pioneering example of a project where blasting has been optimized, and therefore do not need crushing facilities.

Procemin-GEOMET-2017

GECAMIN


The "Total Rock Concept" (TRC)

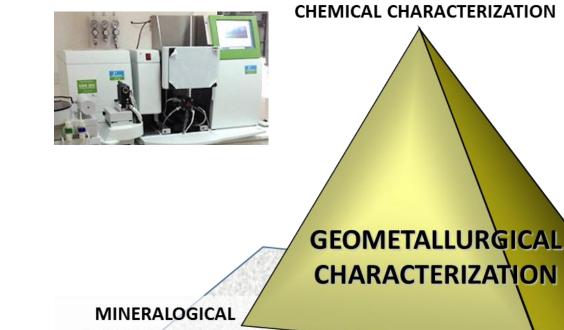
- The philosophical basis of the Geometallurgy, in how we propose and apply it, is the TOTAL ROCK CONCEPT (TRC) as defined by Canchaya (2008).
- This concept considers the rock as a whole and that designations of ore and waste are circumstantial and established by the human being based on their requirements or currently needs generally juncture or cultural.
- Therefore, the differentiation between ore and gangue will be only a valid exercise if they are considered as parts of a whole.
- The assumption of the TRC means the reconciliation of the ORE with the GANGUE; in a certain way is the claim of the gangue, sometimes called in a very derogatory way as "waste", when we know that gangue minerals are the main actors in different metallurgical circuits, such as crushing, grinding, flotation, cyanidation, acid leaching, etc.
- Additionally the main problems that occur in plants are mainly related to gangues, especially due to its relative abundance, which in some types of deposits, especially in the low-grade, are largely predominant.

GECAMIN

Cu(Mo) porphyry

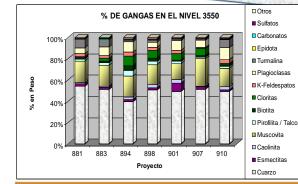
Ore < 2 or 3 % Gangue > 97 %

HS epithermal Au deposit

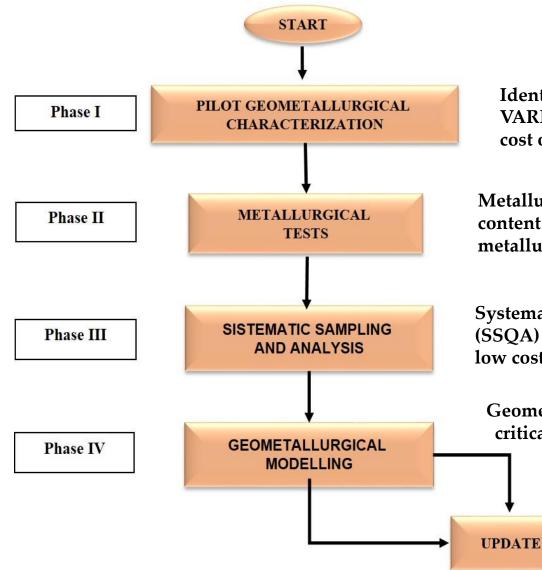

Ore: 1 ppm <> 1 gr/t <> 0.0001 % "Gangue" > 99.9999X %; x ε (1,9)

Geometallurgical characterization based on TRC

Chalcocite-Covellite Textures


GECAMIN

PHYSICAL-MECHANICAL **CHARACTERIZATION**


SMI **JKMRC**

CHARACTERIZATION

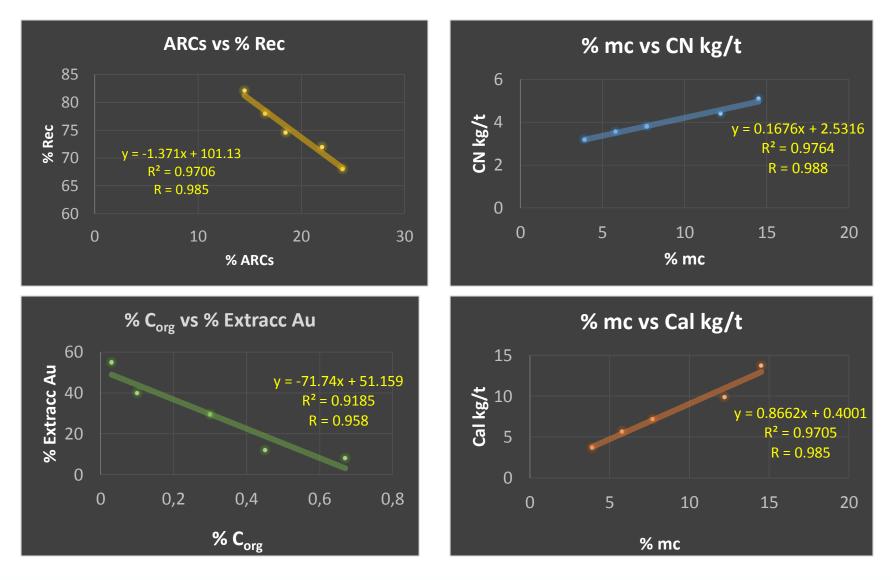
TEXTURAL TOTAL ROCK CONCEPT CHARACTERIZATION

Implementation of the Geometallurgical Block Modell

Identify and characterize CRITICAL VARIABLES that will influence success and cost of mining and metallurgical process.

Metallurgical testing of samples with known content of the critical variables, to model its metallurgical behaviour.

Systematic sampling and quantitative analysis (SSQA) of the critical variables, with fast and low cost methods.


Geometallurgical block modelling of every critical variable, by kriging or simulations using geometallurgical databases

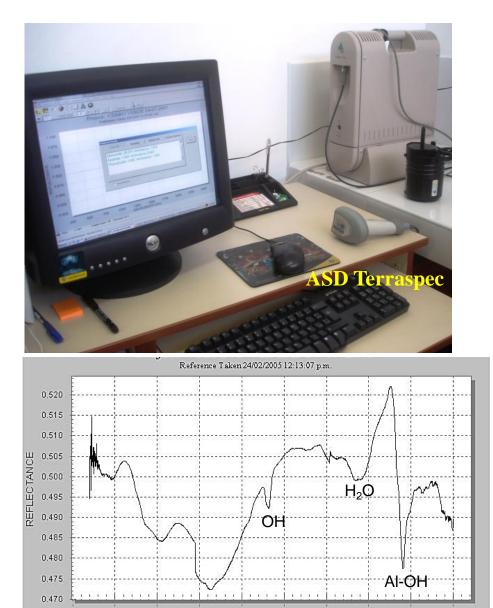
51MI **JKMRC**

GECAMIN

Procemin.GEOMET.2017

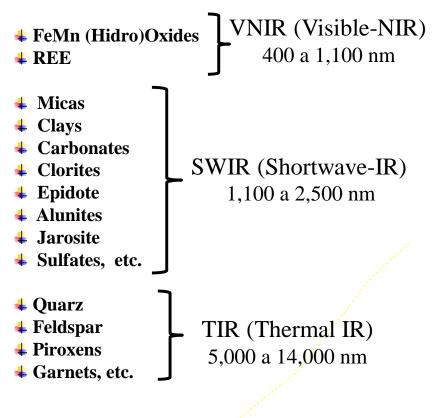
Metallurgical testing of CRITICAL VARIABLES

Procemin-GEOMET-2017



SMI **JKMRC**

Systematic sampling and quantitative analysis (SSQA) of the critical variables RQD Long term Density DINT LOAD TEST **Point Load** Test (MPa) Chemical Textural characterization characterization **Physical-mechanical** Mineralogical characterization characterization Short term


Procemin-GEOMET-2017

Versided de Concepción

Spectrometry NIR

• PIMA (Portable Infrared Mineral Analyzer) • ASD Terraspec

SMI **JKMRC**

GECAMIN

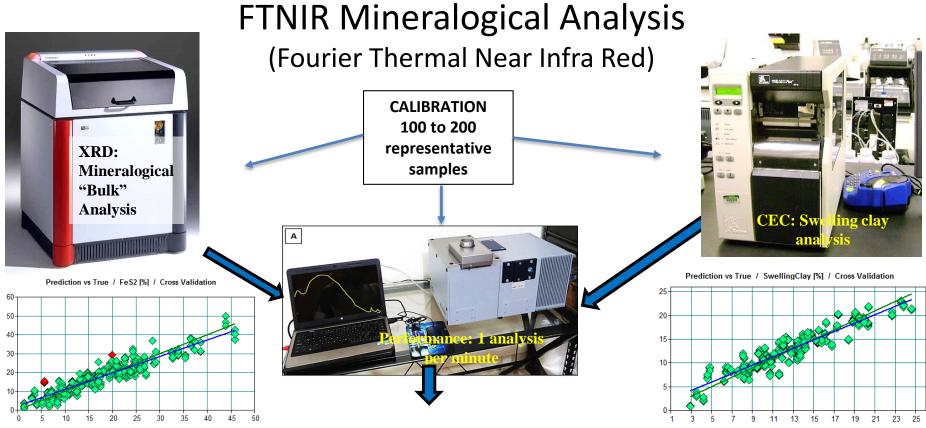
Procemin-GEOMET-2017

1000

1250

1750

1500 WAVELENGTH (nm) 2000


2250

2500

250

500

750

Offset: 2.186 Slope: 0.873 Corr. Coeff.: 0.926 Rank: 10 R² = 85.71 RMSECV = 3.5 Bias: 0.0777 RPD: 2.65

Depth	Interval	SampleID	Siderite	FeS2 Swelling	sClay Ja	rosite	Muscovite	Goethite	Arsenopyrite	Szomolnokite	C
200.20	1.30	127565	47.73	15.62	4.34	7.62	0.01	0.03	0.00	10.30	J
201.70	1.50	127566	42.65	13.27	5.92	7.97	0.37	0.55	0.00	12.16	1
30.40	2.00	129052	51.95	10.90	4.74	3.82	0.33	0.00	0.00	9.12	1
82.40	2.00	129053	42.85	13.28	5.02	4.67	0.26	0.00	0.00	12.34	1
84.40	2.00	129054	47.59	10.49	5.18	4.64	0.36	0.00	0.00	10.26	1
85.40	2.00	129055	43.87	7.83	6.29	5.22	0.47	0.00	0.00	11.18	
170.70	2.00	129106	49.05	8.48	8.03	3.91	0.60	1.58	0.00	7.93	
172.70	2.00	129107	51.58	7.99	6.75	3.38	0.52	1.00	0.00	7.86	
174.70	2.00	129109	39.68	3.58	12.96	3.15	0.88	2.43	0.00	10.11	
176.70	2.00	129110	38.29	2.04	13.61	3.72	0.94	2.89	0.00	8.24	
178.50	1.80	129111	38.57	4.85	12.31	4.62	0.84	2.21	0.29	9.29	-
180.10	1.60	129112	28.19	8.15	13.88	5.05	0.94	2.85	0.00	11.73	-
181.30	1.20	129113	28.06	1.45	16.15	3.38	1.15	4.24	0.00	10.37	
183.50	2.20	129114	39.14	4.00	11.19	4.35	0.78	1.99	0.00	9.39	-
185.50	2.00	129115	35.29	2.11	13.62	4.24	0.97	2.29	0.00	9.00	-
187.50	2.00	129116	35.26	3.87	11.45	4.09	0.80	2.62	0.00	11.56	-
189.50	2.00	129117	34.21	3.48	13.55	3.99	0.95	2.73	0.00	9.99	
190.80	1.30	129118	35.84	5.87	11.37	4.20	0.71	2.83	0.00	8.83	-
191.50	0.70	129119	43.92	9.52	7.88	3.76	0.57	1.70	0.00	10.23	3
195.00	2.00	129121	36.99	9.34	9.61	2.28	0.64	2.20	0.00	12.19	-
197.00	2.00	129122	34.23	5.72	11.55 🔜	2.21	0.76	2.37	0.00	12.49	-
211.60	2.50	129131	42.60	10.08	7.54	3.49	0.47	1.58	0.00	10.60	3
213.60	2.00	129132	40.18	5.22	7.71	3.85	0.49	1.34	0.00	12.68	3

Offset: 1.542

Slope: 0.885

Rank: 7 R² = 86.84 RMSECV = 1.69 Bias: -0.0597

Corr. Coeff.: 0.9321

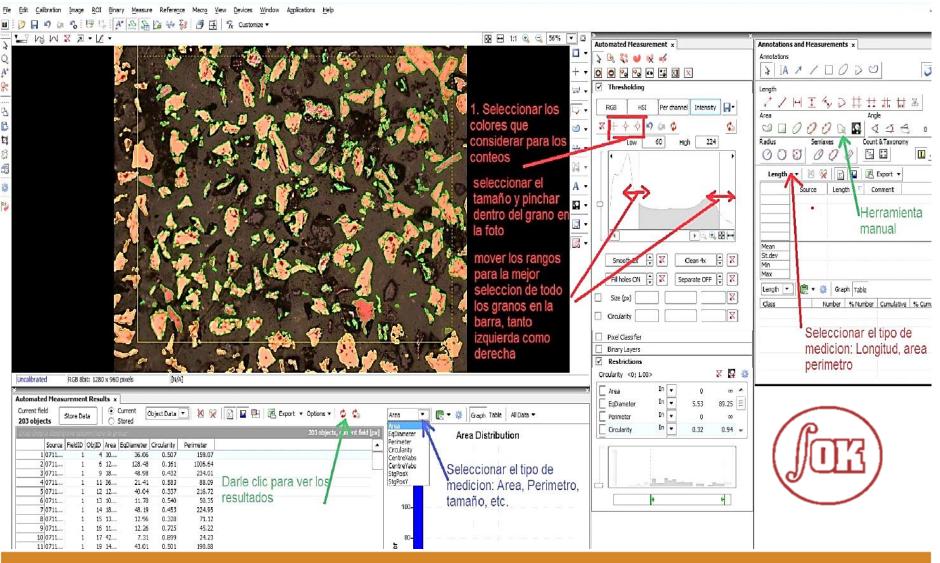
RPD: 2.76

Comparative performance of common Mineralogical analysis

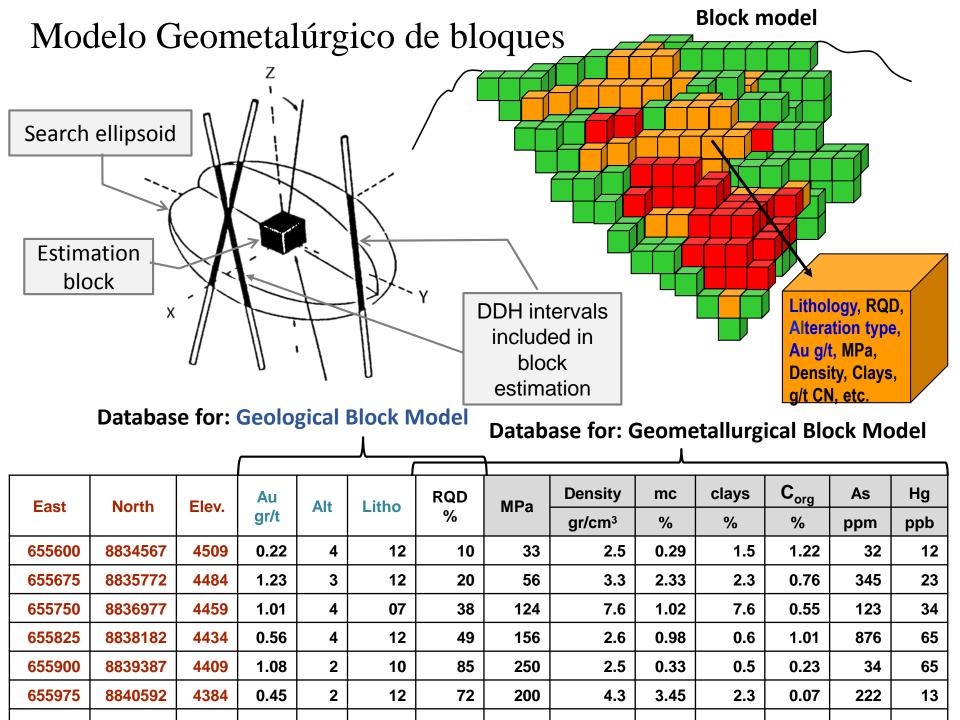
Method	Deliverable results	Execution time per sample	20,000 samples
FTNIR Spectrometry	Semi-quantitative mineralogical analysis (clays, sulphates, carbonates, limonites, micas, etc.)	Tens of seconds	15 days
X-Ray diffraction	Quantitative "Bulk" mineralogical analysis.	Tens of minutes	417 days
Optical microscopy with automatic image analysis	Modal mineralogical analysis of ore and gangue; intergrowths analysis, liberation degree, etc.	Several tens of minutes	515 days
LMA – QEMSCAN-TESCAN	Full automatized chemical, mineralogical and textural analysis	Hours	850 days

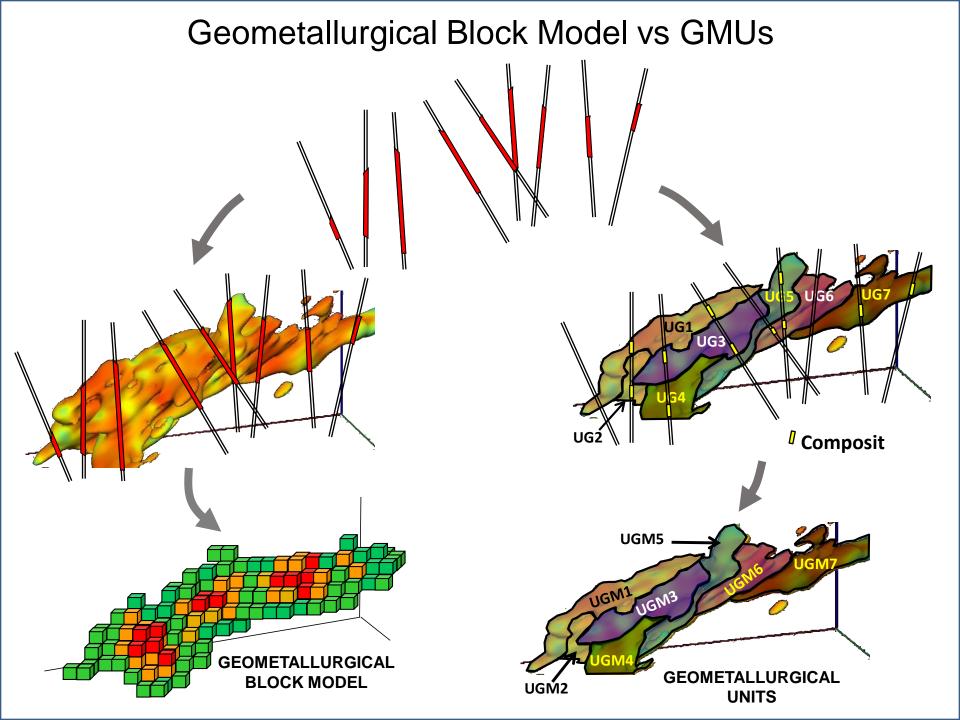
SMI **JKMRC**

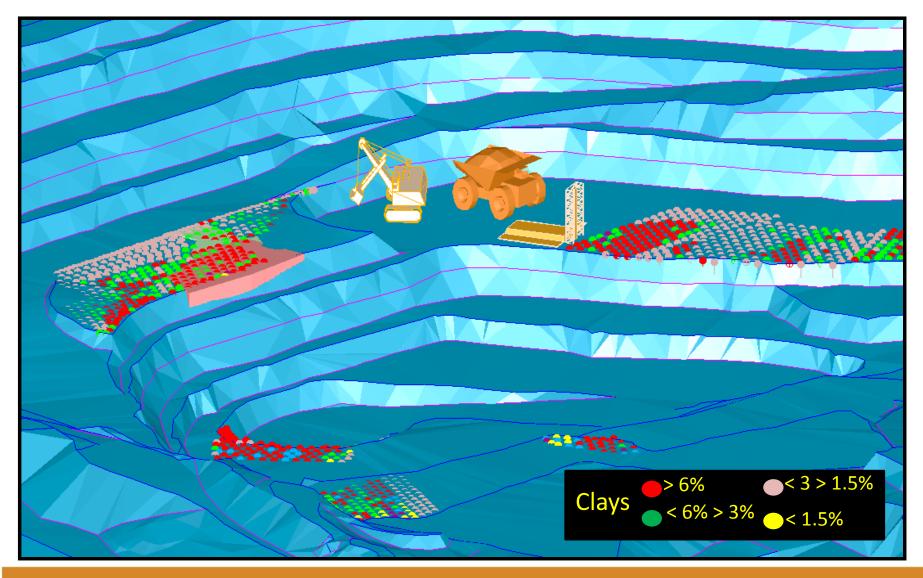
GECAMIN


Textural-Structural Characterization

SCALE	DOMAIN	TOOLS	MAIN APLICATIONS	
MEGASCOPIC	ROCK MASS	Geological mapping by cells. Macro-images processed by automatized image analyzer software (AIAS)	Blasting optimization	
	DDH CORE	%RQD		
MACROSCOPIC	DDH OR RC	Geometallurgical logging	Blasting and comminution optimization. Metallurgical treatment	
MICROSCOPIC	HAND SPECIMENS AND POLISHED/	Optical microscopy with AIAS Electronic microscopy (SEM/EDS o WDS), LMA/QEMSCAN/TESCAN	Mineralogical modal analysis; mineral intergrowths, liberation degree of ore and minerals carriers of penalty elements	
SUB-MICROSCOPIC	THIN SECTIONS	Electronic microscopy (SEM/EDS o WDS), LMA/QEMSCAN	For submicropic, structural, solid solution and colloidal occurrence of Au, Ag, As, Sb, etc.	




Automated modal and liberation analysis with optical microscope


SMI**JKMRC**

GECAMIN

Short term clay modelling from "blast holes"

Conclusions

Currently there are still a few cases of application of GMBM and in general only partially: Cu-Mo porphyry Cerro Verde (Fennel et al. 2005), Cu-Mo porphyry Trapiche (3,227 MPa and 1,050 density determinations), the mesotermal deposits San Gabriel (Canchaya et al. 2013; 3064 MPa, 5200 density determinations, 3030 FTNIR analysis, and thousands of RQD), La Granja-Río Alto (almost 3 year of Qemscan analysis) and Marcapunta (Huallpallunca & Zapata 2017; this event).

With recent technological advances of infrared spectrometers, it is already currently possible to obtain rapid semi-quantitative mineralogical analysis, less than a minute per sample. If we add systematic quick measurements of uniaxial point load, RQD and density; it is now possible to have thousands of data required to implement a probabilistic GMBM; which by far constitutes currently the best deliverable product of Geometallurgy.

GECAMIN

Procemin-GEOMET-2017

13th International Mineral Processing Conference 4th International Seminar on Geometallurgy

GRACIAS

Muestreo y QA/QC & Geoestadística & Geometalurgia

www.sampling-ok.com samplingok@gmail.com; canmoysa@gmail.com

gecamin.com/procemin.geomet

GRACIAS

www.sampling-ok.com samplingok@gmail.com; canmoysa@gmail.com

SMIJKMRC

GECAMIN

Procemin.GEOMET.2017